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Bd. Bucureşti, 39, 100680 Ploieşti
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1 Introduction
This paper deals with a subject in the field of non-
additivity. In Measure Theory, the countable (or fi-
nite) additivity is fundamental. However, there are
many aspects of the real world where the countable
(or finite) additivity does not work. For example, in
problems of capacity, the efficiency of a finite set of
persons working together is not the sum of the effi-
ciency of every person. The capacities and the Cho-
quet integrals (defined by Choquet [9] in 1953-1954),
as well as fuzzy measures and non-linear fuzzy inte-
grals (defined by Sugeno [44] in 1974) have important
and interesting applications in potential theory, sta-
tistical mechanics, economics, finance, the theory of
transferable-utility cooperative games, artificial intel-
ligence, data mining, decision making, computer sci-
ence, subjective evaluation (e.g., [9], [22], [26], [28],
[29], [33], [34], [40], [44], [45]).

By means of finite or infinite Riemann type sums,
different kinds of integrals have been defined and
studied for instance in [1], [2], [3], [4], [5], [6], [7],
[8], [10], [11], [12], [13], [14], [16-24], [25], [27],
[31], [32], [36-39], [41], [42], [43]. For example, the
Birkhoff integral [2] was defined for a vector function
f : T → X , relative to a complete finite measure m :

A → [0,+∞), using series of type
∞∑
n=0

f(tn)m(Bn),

accordingly to a countable partition {Bn}n∈N of T
and tn ∈ Bn, for every n ∈ N.

In this paper, we define and study a new non-
linear integral of Birkhoff type (named Birkhoff
weak) for vector (real respectively) functions, with re-
spect to a non-additive non-negative (vector respec-
tively) set function, using finite Riemann type sums
and countable partitions. Our definition can be placed
between the Birkhoff integral [2] and the Gould in-
tegral [25]. The paper is structured in six sections.
The first one is for Introduction. In Section 2, some
preliminaries are presented. In Section 3, we define
and study the Birkhoff weak integral of vector or real
functions and establish some comparison results with
Birkhoff inequality and Pettis integrability. Section
4 contains some integral properties for vector func-
tions and Sections 5 includes some integral properties
for real functions such as, the linearity relative to the
function and the measure and the monotonicity with
respect to the function, the measure and the set. In
Section 6 we present some properties of monotonicity
for the case when both the function and the set func-
tion µ have real values. Finally, in Section 7, we ex-
pose some conclusions.
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2 Preliminaries

Let T be a nonempty set, P(T ) the family of all sub-
sets of T ,A a σ-algebra of subsets of T and (X, ‖ · ‖)
a real Banach space.

Definition 2.1 Let T be an infinite set.
(i) A countable partition of T is a countable fam-

ily of nonempty sets P = {An}n∈N ⊂ A such that
Ai ∩Aj = ∅, i 6= j and

⋃
n∈N

An = T .

(ii) If P and P ′ are two countable partitions of T ,
then P ′ is said to be finer than P , denoted by P ≤ P ′
(or, P ′ ≥ P ), if every set of P ′ is included in some set
of P .

(iii) The common refinement of two countable
partitions P = {Ai} and P ′ = {Bj} is the parti-
tion P ∧ P ′ = {Ai ∩ Bj}. We denote by P the class
of all partitions of T and if A ∈ A is fixed, by PA we
denote the class of all partitions of A.

Definition 2.2 [30] Let µ : A → [0,+∞) be a non-
negative function, with µ(∅) = 0. µ is said to be:

(i) monotone if µ(A) ≤ µ(B), ∀A,B ∈ A, with
A ⊆ B;

(ii) finitely additive if µ(A ∪B) = µ(A) + µ(B)
for every disjoint A,B ∈ A;

(iii) a (σ-additive) measure if µ(
∞⋃
n=0

An) =

∞∑
n=0

µ(An), for every sequence of pairwise disjoint

sets (An)n∈N ⊂ A.

Definition 2.3 [15] Let µ : A → [0,+∞) be a non-
negative set function.

(i) The variation µ of µ is the set function
µ : P(T ) → [0,+∞] defined by µ(E) =

sup{
n∑
i=1

µ(Ai)}, for every E ∈ P(T ), where the

supremum is extended over all finite families of pair-
wise disjoint sets {Ai}ni=1 ⊂ A, with Ai ⊆ E, for
every i ∈ {1, . . . , n}. If µ : A → X is a vector set
function, then in the definition of supremum, we will
consider

∑n
i=1 ‖µ(Ai)‖.

(ii) µ is said to be of finite variation on A if
µ(T ) <∞.

Remark 2.4 If E ∈ A, then in Definition 3, we
may consider the supremum over all finite partitions
{Ai}ni=1 ⊂ A, of E.

Definition 2.5 A property (P) about the points of T
holds almost everywhere (denoted µ-ae) if there exists
A ∈ P(T ) so that µ̃(A) = 0 and (P) holds on T\A.

Definition 2.6 [27] Let µ : A → [0,+∞) be a
non-negative set function with µ(∅) = 0. A function
f : T → X is called Riemann-Lebesgue µ-integrable
(RL-µ-integrable for short) (on T ) if there exists α ∈
X having the property that for every ε > 0, there ex-
ists a countable partition Pε of T in A such that for
every other countable partition P = {An}n∈N of T
in A, with P ≥ Pε and every tn ∈ An, n ∈ N, the

series
∞∑
n=0

f(tn)µ(An) converges unconditionally and

‖
∑∞

n=0 f(tn)µ(An) − α‖ < ε. In this case, we de-
note α = (RL)

∫
T fdµ, which is called the Riemann-

Lebesgue integral of f on T relative to µ.

Remark 2.7 According to Theorem 8 of [35], if
(T,A, µ) is a σ-finite measure space, then Riemann-
Lebesgue integrability of f : T → X is equivalent to
Birkhoff [2] integrability of f .

3 The Birkhoff weak integral of
functions

In this section, we define and study the Birkhoff weak
integral of real or vector functions and establish some
comparison results.

In the sequel, suppose (X, ‖·‖) is a Banach space,
T is infinite and A is a σ-algebra of subsets of T .

Definition 3.1 Let f : T → X and µ : A → [0,+∞)
(or f : T → R and µ : A → X) with µ(∅) = 0.

I. f is called Birkhoff weak µ-integrable (on T )
(simply Bw-µ-integrable) if there exists α ∈ X so
that for every ε > 0, there exist a countable partition
Pε of T in A and nε ∈ N such that for every other
countable partition P = {An}n∈N of T in A, with
P ≥ Pε, and every tn ∈ An, n ∈ N, it holds

‖
n∑
k=0

f(tk)µ(Ak)− α‖ < ε,∀n ≥ nε.

In this case, α is denoted by (Bw)
∫
T fdµ and is

called the Birkhoff weak integral of f on T relative
to µ.

II. f is called Birkhoff weak µ-integrable on a
set E ∈ A if the restriction f |E is Birkhoff weak µ-
integrable on (E,AE , µ), where AE = {E ∩ A|A ∈
A}.

Remark 3.2 If it exists, the integral is unique.

Example. I. If f(t) = 0, for every t ∈ T , then f is
Bw-µ-integrable and (Bw)

∫
T fdµ = 0.
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II. Suppose T = {tn|n ∈ N} is countable,
{tn} ∈ A and let f : T → X be such that the se-

ries
∞∑
n=0

f(tn)µ({tn}) is unconditionally convergent.

Then f is Bw-µ-integrable and

(Bw)

∫
T
fdµ =

∞∑
n=0

f(tn)µ({tn}).

Remark 3.3 I. If we consider the multifunction F =
{f}, where f : T → X is a vector function, and
µ : A → [0,+∞) with µ(∅) = 0, then by Definition
9 [10], it results that f is Bw-µ-integrable if and only
if F is Bw-µ-integrable (according to [10]).

II. If we consider a real function f : T → R and
the set multifunction ϕ = {µ}, where µ : A → X is a
vector set function, with µ(∅) = 0, then by Definition
14-II [11], it follows that f is Bw-µ-integrable if and
only if f is Bw-ϕ-integrable (according to [11]).

Theorem 3.4 Let f : T → [0,+∞) be a non-
negative function and µ : A → [0,+∞) a
non-negative set function with µ(∅) = 0. If f is
Bw-µ-integrable, then f is RL-µ-integrable and
(RL)

∫
T fdµ = (Bw)

∫
T fdµ.

Proof. Let ε > 0 be arbitrary. Since f is Bw-µ-
integrable, there exist Pε ⊂ A a countable partition of
T and nε ∈ N that satisfy the conditions of Definition
3.1. Let P = {An}n∈N ⊂ A be a countable partition
of T , with P ≥ Pε and tn ∈ An, n ∈ N. Denoting

sn =
n∑
k=0

f(tk)m(Ak), for every n ∈ N, according to

Definition 3.1, it holds

(∗)
∣∣∣∣sn − (Bw)

∫
T
fdm

∣∣∣∣ < ε

2
, ∀n ≥ nε.

This shows that the series
∞∑
n=0

f(tn)m(An) is un-

conditionally convergent. By (*) it also results that

|
∞∑
n=0

f(tn)m(An) − (Bw)
∫
T fdm| < ε. Conse-

quently, f is RL-µ-integrable and (RL)
∫
T fdm =

(Bw)
∫
T fdm. �

Theorem 3.5 Suppose (T,A, µ) is a σ-finite measure
space and µ : A → [0,+∞) is σ-additive. If f : T →
X is Bw-µ-integrable, then f is Pettis integrable.

Proof. Since f is Bw-µ-integrable, for every ε >
0, there exist a countable partition Pε of T in A and
nε ∈ N such that for every other countable partition

P = {An}n∈N of T in A, with P ≥ Pε, and every
tn ∈ An, n ∈ N, it holds

‖
n∑
k=0

f(tk)µ(Ak)− (Bw)

∫
T
fdµ‖ < ε,∀n ≥ nε.

Then for every x∗ ∈ X∗ and every n ≥ nε it follows

|
n∑
k=0

(x∗ ◦ f)(tk)µ(Ak)− x∗((Bw)
∫
T
fdµ)| < ε.

This shows that x∗ ◦ f is Bw-µ-integrable. It
also results that the series

∑∞
n=0(x

∗ ◦ f)(tn)µ(An)
is convergent and |

∑∞
n=0(x

∗ ◦ f)(tn)µ(An) −
x∗((Bw)

∫
T fdµ)| < ε.

As in Theorem 3.14 [7], it is demonstrated that
the series

∑∞
n=0(x

∗ ◦ f)(tn)µ(An) is uncondition-
ally convergent. So, x∗ ◦ f is Birkhoff µ-integrable
and therefore is in L1 for every x∗ ∈ X∗. Evidently,∫
T (x

∗ ◦ f)dµ = x∗((Bw)
∫
T fdµ), for all x∗ ∈ X∗.

Consequently, f is Pettis integrable. �

4 Integral properties of vector func-
tions

In this section, we present some properties of the
Birkhoff weak integral for a vector function f with re-
spect to a non-negative set function µ : A → [0,+∞)
with µ(∅) = 0. According to Remark 3.3-I and the
integral properties of the multifunction F = {f} in
[10], we obtain the following properties of the inte-
gral introduced in Definition 3.1.

Theorem 4.1 If f : T → X is bounded and f = 0 µ-
ae, then f isBw-µ-integrable and (Bw)

∫
T fdµ = 0.

Theorem 4.2 Let f : T → X be a Bw-µ-integrable
function. Then f is Bw-µ-integrable on E ∈ A if and
only if fXE is Bw-µ-integrable on T , where XE is
the characteristic function of E. In this case,

(Bw)

∫
E
fdµ = (Bw)

∫
T
fXEdµ.

Theorem 4.3 If f, g : T → X are Bw-µ-integrable,
then f + g is Bw-µ-integrable and
(Bw)

∫
T (f + g)dµ = (Bw)

∫
T fdµ+ (Bw)

∫
T gdµ.

Theorem 4.4 Let f, g : T → X be Bw-µ-integrable
vector functions. Then the following properties hold:

(i) ‖(Bw)
∫
T fdµ − (Bw)

∫
T gdµ‖ ≤

sup
t∈T
‖f(t)− g(t)‖ · µ(T );

(ii) ‖(Bw)
∫
T fdµ‖ ≤ supt∈T ‖f(t)‖ · µ(T ).
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Theorem 4.5 Let f : T → X be a Bw-µ-integrable
function and α ∈ R. Then:

(i) αf is Bw-µ-integrable and

(Bw)

∫
T
αfdµ = α(Bw)

∫
T
fdµ;

(ii) f is Bw-αµ-integrable (α ∈ [0,+∞)) and

(Bw)

∫
T
fd(αµ) = α(Bw)

∫
T
fdµ.

Theorem 4.6 Suppose µ1, µ2 : A → [0,+∞) are
non-negative set functions with µ1(∅) = µ2(∅) = 0.
If f : T → X is both Bw-µ1-integrable and Bw-µ2-
integrable, then f is Bw-(µ1 + µ2)-integrable and

(Bw)

∫
T
fd(µ1 + µ2)

= (Bw)

∫
T
fdµ1 + (Bw)

∫
T
fdµ2.

Theorem 4.7 Suppose µ : A → [0,+∞) is finitely
additive. Let f, g : T → X be vector functions,
with sup

t∈T
‖f(t) − g(t)‖ < +∞, such that f is Bw-

µ-integrable and f = g µ-ae. Then g is Bw-µ-
integrable and (Bw)

∫
T fdµ = (Bw)

∫
T gdµ.

Other properties of the integral will be presented
in the sequel.

Theorem 4.8 Let f : T → X be a Bw-µ-integrable
function, such that the real function ‖f‖ : T →
[0,+∞) is Bw-µ-integrable. Then

‖(Bw)
∫
T
fdµ‖ ≤ (Bw)

∫
T
‖f‖dµ.

Proof. Suppose ε > 0 is arbitrary. Since f is Bw-
µ-integrable, there exist P 1

ε ∈ P and n1ε ∈ N so that
for every P = {An}n∈N ∈ P , P ≥ P 1

ε , and every
sn ∈ An, n ∈ N, it holds

‖
n∑
k=0

f(sk)µ(Ak)− (Bw)

∫
T
fdµ‖ < ε

2
,

for every n ∈ N, n ≥ n1ε .
Since ‖f‖ is Bw-µ-integrable, there exist P 2

ε ∈
P and n2ε ∈ N so that for every P = {Bn}n∈N ∈ P ,
P ≥ P 2

ε and every un ∈ Bn, n ∈ N, it holds

|
n∑
k=0

‖f(tk)‖µ(Bk)− (Bw)

∫
T
‖f‖dµ| < ε

2
,

for every n ∈ N, n ≥ n2ε .

Now, we consider Pε = P 1
ε ∧ P 2

ε ∈ P and nε =
max{n1ε, n2ε}. Then for every P = {Cn}n∈N ∈ P ,
P ≥ Pε and every tn ∈ Cn, n ∈ N, we obtain the
following inequalities

‖
n∑
k=0

f(tk)µ(Ck)− (Bw)

∫
T
fdµ‖ < ε

2
, (1)

|
n∑
k=0

‖f(tk)‖µ(Ck)− (Bw)

∫
T
‖f‖dµ| < ε

2
. (2)

By (1) and (2) we get:

‖(Bw)
∫
T
fdµ‖ ≤ ‖(Bw)

∫
T
fdµ−

n∑
k=0

f(tk)µ(Ck)‖

+ ‖
n∑
k=0

f(tk)µ(Ck)‖

<
ε

2
+ |

n∑
k=0

‖f(tk)‖µ(Ck)− (Bw)

∫
T
‖f‖dµ|+

+ (Bw)

∫
T
‖f‖dµ < ε+ (Bw)

∫
T
‖f‖dµ.

Since ε > 0 is arbitrary, the conclusion follows. �

Definition 4.9 Let ν : A → X , ν(∅) = 0 and µ :
A → [0,+∞), µ(∅) = 0. It is said that ν is absolutely
continuous with respect to µ (denoted by ν � µ) if for
any ε > 0, there is δ > 0 such that for every E ∈ A,

µ(E) < δ ⇒ ‖ν(E)‖ < ε.

Theorem 4.10 Suppose f : T → X is bounded and
Bw-µ-integrable on every set E ∈ A, such that α =
supt∈T ‖f(t)‖ > 0 and let ν : A → X be defined
by ν(E) = (Bw)

∫
E fdµ, for every E ∈ A. Then

ν � µ.

Proof. For every ε > 0, let δ = ε
α > 0 and let E ∈ A

be any measurable set so that µ(E) < δ. Then, by
Theorem 4.4 - (ii), we have:

‖ν(E)‖ = ‖(Bw)
∫
E
fdµ‖

≤ sup
t∈E
‖f(t)‖ · µ(E) < αδ = ε.

This shows that ν � µ. �

Theorem 4.11 Let f : T → X be a vector function.
(i) If f is both Bw-µ-integrable on B and Bw-

µ-integrable on C, when B,C ∈ A are disjoint mea-
surable sets, then f is Bw-µ-integrable on B∪C and
(Bw)

∫
B∪C fdµ = (Bw)

∫
B fdµ+ (Bw)

∫
C fdµ.

(ii) If f is Bw-µ-integrable on every set E ∈ A,
then the set function ν : A → X , defined by ν(E) =
(Bw)

∫
E fdµ, ∀E ∈ A, is finitely additive.
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Proof. (i) Suppose ε > 0 is arbitrary. Since f is
Bw-µ-integrable on B, there exist a partition of B,
P εB = {Dn}n∈N ∈ PB and n1ε ∈ N such that for
every partition of B, P = {An}n∈N ∈ PB , P ≥ P εB
and tn ∈ An, n ∈ N, it holds

‖
n∑
k=0

f(tk)µ(Ak)− (Bw)

∫
B
fdµ‖ < ε

2
, ∀n ≥ n1ε.

(3)
Since f is Bw-µ-integrable on C, there exist a parti-
tion of C, P εC = {En}n∈N ∈ PC and n2ε ∈ N such
that for every partition of C, P = {Un}n∈N ∈ PC ,
P ≥ P εC and sn ∈ Un, n ∈ N, it holds

‖
n∑
k=0

f(sk)µ(Uk)− (Bw)

∫
C
fdµ‖ < ε

2
, ∀n ≥ n2ε.

(4)
Let P εB∪C = {Dn, En}n∈N ∈ PB∪C and n ≥
n1ε + n2ε . Now, for every partition of B ∪ C, P =
{Vn}n∈N ∈ PB∪C′ with P ≥ P εB∪C and every un ∈
Vn, n ∈ N, we can write P = {B′n}n∈N ∪ {C ′n}n∈N,
where P ′B = {B′n}n∈N ≥ P εB and P ′C = {C ′n}n∈N ≥
P εC . Also, we can write

∑n
k=0 f(uk)µ(Vk) =∑p

i=0 f(uk)µ(B
′
k) +

∑r
j=0 f(uk)µ(C

′
k), with p ≥

n1ε , r ≥ n2ε . From (3) and (4) we obtain

‖
n∑
k=0

f(uk)µ(Vk)− ((Bw)

∫
B
fdµ+ (Bw)

∫
C
fdµ)‖ ≤

≤ ‖
p∑
i=0

f(uk)µ(B
′
k)− (Bw)

∫
B
fdµ‖

+ ‖
r∑
j=0

f(uk)µ(C
′
k)− (Bw)

∫
C
fdµ‖ < ε

2
+
ε

2
= ε,

which shows that f is Bw-µ-integrable on B ∪C and

(Bw)

∫
B∪C

fdµ = (Bw)

∫
B
fdµ+ (Bw)

∫
C
fdµ.

(ii) It easily results from (i). �

5 Integral properties of real func-
tions

In this section, we present some properties of the
Birkhoff weak integral for a real function with respect
to a vector set function µ : A → X , with µ(∅) = 0.
The nonnegative set function ‖µ‖ : A → [0,+∞)
is defined by ‖µ‖(A) = ‖µ(A)‖, for every A ∈ A.
Evidently, ‖µ‖(∅) = 0. According to Remark 3.3-II
and the properties of the integral of f with respect to
the set multifunction ϕ = {µ} in [11], the following
results are obtained.

Theorem 5.1 If f : T → R is bounded and f = 0 µ-
ae, then f isBw-µ-integrable and (Bw)

∫
T fdµ = 0.

Theorem 5.2 f : T → R isBw-µ-integrable onE ∈
A if and only if fXE is Bw-µ-integrable on T.

Theorem 5.3 If f, g : T → R are Bw-µ-integrable
and f(t)g(t) ≥ 0 for every t ∈ T , then f + g is Bw-
µ-integrable and

(Bw)

∫
T
(f + g)dµ = (Bw)

∫
T
fdµ+(Bw)

∫
T
gdµ.

Theorem 5.4 Let f, g : T → R be Bw-µ-integrable
bounded functions. Then:

(i) ‖(Bw)
∫
T fdµ − (Bw)

∫
T gdµ‖ ≤

supt∈T |f(t)− g(t)| · µ(T );
(ii) ‖(Bw)

∫
T fdµ‖ ≤ supt∈T |f(t)| · µ(T ).

Theorem 5.5 Let f : T → R be a Bw-µ-integrable
function and α ∈ R. Then:

(i) αf is Bw-µ-integrable and

(Bw)

∫
T
αfdµ = α(Bw)

∫
T
fdµ;

(ii) f is Bw-(αµ)-integrable and

(Bw)

∫
T
fd(αµ) = α(Bw)

∫
T
fdµ.

Theorem 5.6 Let µ1, µ2 : A → X be non-negative
set functions with µ1(∅) = µ2(∅) = 0. If f : T → R is
both Bw-µ1-integrable and Bw-µ2-integrable, then
f is Bw-(µ1 + µ2)-integrable and (Bw)

∫
T fd(µ1 +

µ2) = (Bw)
∫
T fdµ1 + (Bw)

∫
T fdµ2.

Theorem 5.7 Suppose µ : A → X is finitely additive
and let A,B ∈ A be disjoint sets. If f : T → R
is Bw-µ-integrable both on A and on B, then f is
Bw-µ-integrable on A ∪ B and (Bw)

∫
A∪B fdµ =

(Bw)
∫
A fdµ+ (Bw)

∫
B fdµ.

Theorem 5.8 Suppose µ : A → X is finitely addi-
tive. If f, g : T → R are bounded functions such
that f is Bw-µ-integrable and f = g µ-ae, then g is
Bw-µ-integrable and

(Bw)

∫
T
fdµ = (Bw)

∫
T
gdµ.

Moreover, the following properties of the integral
are obtained.

Theorem 5.9 Suppose the nonnegative function f :
T → [0,+∞) is Bw-µ-integrable and Bw-‖µ‖-
integrable. Then

‖(Bw)
∫
T
fdµ‖ ≤ (Bw)

∫
T
fd‖µ‖.
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Proof. Let ε > 0 be arbitrary. Since f is Bw-µ-
integrable, there exist P 1

ε ∈ P and n1ε ∈ N such that
for every P = {An}n∈N ∈ P , with P ≥ P 1

ε , and each
sn ∈ An, n ∈ N, it holds

‖
n∑
k=0

f(sk)µ(Ak)− (Bw)

∫
T
fdµ‖ < ε

2
,∀n ≥ n1ε.

Since f is Bw-‖µ‖-integrable, there exist P 2
ε ∈ P

and n2ε ∈ N such that for every P = {Bn}n∈N ∈ P ,
with P ≥ P 2

ε , and each un ∈ Bn, n ∈ N, it holds

|
n∑
k=0

f(uk)‖µ(Bk)‖−(Bw)
∫
T
fd‖µ‖| < ε

2
, ∀n ≥ n2ε.

Let Pε = P 1
ε ∧P 2

ε ∈ P and nε = max{n1ε, n2ε}. Then
for every P = {Cn}n∈N ∈ P , P ≥ Pε, and every
tn ∈ Cn, n ∈ N, it results

‖
n∑
k=0

f(tk)µ(Ck)− (Bw)

∫
T
fdµ‖ < ε

2
, (5)

|
n∑
k=0

f(tk)‖µ(Ck)‖ − (Bw)

∫
T
fd‖µ‖| < ε

2
. (6)

Now, by (5) and (6), it follows

‖(Bw)
∫
T
fdµ‖ ≤ ‖(Bw)

∫
T
fdµ−

n∑
k=0

f(tk)µ(Ck)‖

+ ‖
n∑
k=0

f(tk)µ(Ck)‖

<
ε

2
+ |

n∑
k=0

f(tk)‖µ(Ck)‖

− (Bw)

∫
T
fd‖µ‖|+ (Bw)

∫
T
fd‖µ‖

< ε+ (Bw)

∫
T
fd‖µ‖, ∀ε > 0.

Consequently, ‖(Bw)
∫
T fdµ‖ ≤ (Bw)

∫
T fd‖µ‖. �

Definition 5.10 Suppose ν : A → X and µ : A →
X are vector set functions such that ν(∅) = µ(∅) = 0.
It is said that ν is absolutely continuous with respect
to µ (denoted by ν � µ) if for every ε > 0, there
exists δ > 0 so that:

∀E ∈ A, µ(E) < δ ⇒ ‖ν(E)‖ < ε.

Theorem 5.11 Let f : T → R be a bounded function
such that f is Bw-µ-integrable on every measurable
set E ∈ A and α = supt∈T |f(t)| > 0. If we consider
the vector set function ν : A → X , defined by ν(E) =
(Bw)

∫
E fdµ, for every E ∈ A, then ν � µ.

Proof. Consider δ = ε
α > 0 for any ε > 0. Now,

according to Theorem 5.4-(ii), it results:

‖ν(E)‖ = ‖(Bw)
∫
E
fdµ‖ ≤ sup

t∈E
|f(t)| · µ(E)

< αδ = ε,

for every measurable set E ∈ A, with µ(E) < δ. This
implies ν � µ. �

The following theorem is demonstrated the same
as Theorem 4.11.

Theorem 5.12 Let f : T → R be a real function.
(i) If B,C ∈ A are disjoint sets and f is both

Bw-µ-integrable on B and Bw-µ-integrable on C,
then f isBw-µ-integrable onB∪C and the following
relation holds:

(Bw)

∫
B∪C

fdµ = (Bw)

∫
B
fdµ+ (Bw)

∫
C
fdµ.

(ii) If f is Bw-µ-integrable on every set E ∈ A,
then the set function ν : A → X , defined by ν(E) =
(Bw)

∫
E fdµ, ∀E ∈ A, is finitely additive.

6 The real case

This section contains some properties of monotonic-
ity for the case when both the function f and the set
function µ have real values. These properties show
that the integral is monotone with respect to the func-
tion, the measure and the set. In the sequel, suppose
µ : A → [0,+∞) is a nonnegative set function, with
µ(∅) = 0.

Theorem 6.1 Let f, g : T → R he Bw-µ-integrable
functions. Then the following properties hold:

(i) If f ≤ g, then (Bw)
∫
T fdµ ≤ (Bw)

∫
T gdµ.

(ii) If g ≥ 0, then (Bw)
∫
T gdµ ≥ 0.

Proof. (i) Consider an arbitrary ε > 0. Since f is
Bw-µ-integrable, then there exist P1 ∈ P a countable
partition of T and n1ε ∈ N such that for every count-
able partition of T , P = {An}n∈N, P ≥ P1, and
every tn ∈ An, n ∈ N, it holds

|
n∑
k=0

f(tk)µ(Ak)− (Bw)

∫
T
fdµ| < ε

2
, (7)

∀n ≥ n1ε.

Analogously, since g is Bw-µ-integrable, there ex-
ist P2 ∈ P a countable partition of T and n2ε ∈ N
such that for every countable partition of T , P =
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{An}n∈N, P ≥ P2, and every tn ∈ An, n ∈ N, it
holds

|
n∑
k=0

g(tk)µ(Ak)− (Bw)

∫
T
gdµ| < ε

2
, (8)

∀n ≥ n2ε.

Now, let P0 = P1 ∧ P2 and n0 = max{n1ε, n2ε}, and
consider P = {An}n∈N a countable partition of T ,
with P ≥ P0, tn ∈ An for every n ∈ N and a fixed
n ≥ n0. Since f ≤ g, by (7) and (8), we get

(Bw)

∫
T
fdµ− (Bw)

∫
T
gdµ

≤ |
n∑
k=0

f(tk)µ(Ak)− (Bw)

∫
T
fdµ|+

+
n∑
k=0

[f(tk)− g(tk)]µ(Ak)

+ |
n∑
k=0

g(tk)µ(Ak)− (Bw)

∫
T
gdµ| < ε, ∀ε > 0.

Consequently, the inequality follows.
(ii) We apply (i) for f = 0. �

Theorem 6.2 Let µ1, µ2 : A → [0,+∞) be non-
negative set functions such that µ1(∅) = µ2(∅) = 0
and µ1(A) ≤ µ2(A), for every A ∈ A, and let
f : T → [0,+∞) be a nonnegative function which is
both Bw-µ1-integrable and Bw-µ1-integrable. Then
(Bw)

∫
T fdµ1 ≤ (Bw)

∫
T fdµ2.

Proof. Let ε > 0 be arbitrary. From the hypothesis,
there exist P = {An}n∈N a countable partition of T
and nε ∈ N such that for every tn ∈ An, n ∈ N, it
holds

|
n∑
k=0

f(tk)µ1(Ak)− (Bw)

∫
T
fdµ1| <

ε

2
, (9)

∀n ≥ nε

and

|
n∑
k=0

f(tk)µ2(Ak)− (Bw)

∫
T
fdµ2| <

ε

2
, (10)

∀n ≥ nε.

According to (9) and (10), since µ1 ≤ µ2, we obtain

(Bw)

∫
T
fdµ1 − (Bw)

∫
T
fdµ2

≤ |
n∑
k=0

f(tk)µ1(Ak)− (Bw)

∫
T
fdµ1|

+
n∑
k=0

f(tk)[µ1(Ak)− µ2(Ak)]

+ |
n∑
k=0

f(tk)µ2(Ak)− (Bw)

∫
T
fdµ2| < ε.

Since ε > 0 is arbitrary, the conclusion follows. �

Theorem 6.3 Suppose µ : A → [0,+∞) is mono-
tone and f : T → [0,+∞) is a nonegative function.
Then the following properties hold:

(i) Let A,B ∈ A be measurable sets such that f
is both Bw-µ-integrable on A and Bw-µ-integrable
on B. If A ⊆ B, then (Bw)

∫
A fdµ ≤ (Bw)

∫
B fdµ.

(ii) Suppose f is Bw-µ-integrable on every set
A ∈ A and denote ν(A) = (Bw)

∫
A fdµ, for every

A ∈ A. Then ν is monotone.

Proof. Let ε > 0 be arbitrary. Since f is Bw-µ-
integrable on A, there exist P 1

ε = {Cn}n∈N ⊂ A a
partition of A and n1ε ∈ N such that for each partition
of A, P = {En}n∈N, with P ≥ P 1

ε and tn ∈ En,
n ∈ N, it holds

|
n∑
k=0

f(tk)µ(Ek)− (Bw)

∫
A
fdµ| < ε

2
, (11)

∀n ≥ n1ε.

Now, similarly in the case of B, there exist P 2
ε =

{Dn}n∈N ⊂ A a partition of B and n2ε ∈ N so that
for all partitions of B, P = {En}n∈N, with P ≥ P 2

ε
and tn ∈ En, n ∈ N, it holds

|
n∑
k=0

f(tk)µ(Ek)− (Bw)

∫
B
fdµ| < ε

2
, (12)

∀n ≥ n2ε.

Let P̃ 1
ε = {Cn, B \ A} and P = {En}n∈N a par-

tition of B, with P ≥ P̃ 1
ε ∧ P 2

ε . It results that
P ′′ε = {En ∩A}n∈N is a partition of A and P ′′ε ≥ P ′ε.
Now, consider nε = max{n1ε, n2ε} and tn ∈ En ∩ A,
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n ∈ N. According to (11) and (12) it follows:

(Bw)

∫
A
fdµ− (Bw)

∫
B
fdµ

≤ |(Bw)
∫
A
fdµ−

n∑
k=0

f(tk)µ(Ek ∩A)|

+
n∑
k=0

f(tk)[µ(Ek ∩A)− µ(Ek)]

+ |
n∑
k=0

f(tk)µ(Ek)− (Bw)

∫
B
fµ| < ε.

Since ε > 0 is arbitrary, the inequality results.
(ii) It immediately follows from (i). �

7 Conclusion
We have defined and studied Birkhoff weak integra-
bility of functions f relative to a set function µ. For a
real Banach space (X, ‖ · ‖), we have considered two
cases:

(i) f : T → X and µ : A → [0,+∞) with
µ(∅) = 0 and

(ii) f : T → R and µ : A → X with µ(∅) = 0.
Some comparison results and classical integral

properties are obtained: linearity relative to the func-
tion and to the measure, absolutely continuity. Also,
monotonicity properties for the real case are pre-
sented. As future works:

- relationships between Birkhoff weak integra-
bility and other integrabilities (Gould, Dunford, Mc-
Shane, Henstock-Kurzweil);

- properties of continuity, regularity and Birkhoff
weak integrability on atoms.
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R. Sambucini, Atomicity related to non-additive
integrability, Rend. Circolo Matem. Palermo 65
(3), 2016, pp. 435–449 (DOI: 10.1007/s12215-
016-0244-z).

[9] G. Choquet, Theory of capacities, Annales de
l’Institut Fourier 5, 1953-1954, pp. 131–295.

[10] A. Croitoru, A. Gavriluţ and A. Iosif, Birkhoff
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